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Styles of vent fluid-seawater mixing
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Tools available
» |. Distribution of species as fn of T (MINEQL, EQ3, REACT)
Sensitivity to input
A. thermodynamic data
B. fluid composition data
C. temperature data
ll. Path reaction
A. assumptions about kinetics
B. assumptions about whether T is conservative
lll. Transport-reaction
A. small scale across steep gradients
B. large scale at low transport rates
C. assumptions — kinetics, boundary conditions,
steady-state
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as function of T, P
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Fluid composition

Distribution of species OBS
as function of T, P e e
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Table 4. Fluid composition
Distribution of species OBS

as function of T, P
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Tools available
|. Distribution of species as fn of T (MINEQL, EQ3, REACT)
Sensitivity to input
A. thermodynamic data
B. fluid composition data
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» |I. Path reaction (EQ6, REACT)
A. assumptions about kinetics
B. assumptions about whether T is conservative
lll. Transport-reaction
A. small scale across steep gradients
B. large scale at low transport rates
C. assumptions — kinetics, boundary conditions,
steady-state
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Energy source

Reaction

Sulfate reduction
Sulfide oxidation
Methanogenesis
Methanotrophy

SO, +2H" + 4H, < H,S + 4H,0
H,S + 20, < SO, +2H"
CO, + 4H, &> CH, + 2H,0
CH, + 20, < CO, + 2H,0
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OBS, HF-SW mixing
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But temperature often NOT conservative.
For example in the TAG active mound,

Sr isotopes indicate mix >50 to 99%
seawater, but fluid inclusion data
indicate temperatures of ~350°C.
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Black smoker complex

Seawater
entrainment

Mixing/reaction in plumes

By 10 m above vent, diluted 100 to 1000x
FeS, (Zn,Fe)S precipitate; H,(aq) present
in plume (half-life of “oxidative-removal”
~10 h; Kadko et al., 1990)

By 200-300 m above vent (neutrally buoyant)
diluted ~10000 x.

(Feely et al., 1994)
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Mixing/reaction in plumes
»Mineral precipitation allowed
»Hydrogen oxidation inhibited
Estimated energy available (cal/kg vent fluid):
Oxidation of
Elemental Sulfur ~610
Pyrrhotite ~69
N Sphalerite ~18
Black smoker complex TS ’,f_ H2 (aq) ~160
Seawater : ] Sulfate reduction ~54
e : Methanogenesis ~17
Methanotrophy ~13 (McCollom 2000)

2/

pyrite breccias Min
_ . R
Pyrite + silica zone * 0%

l I @ < - ;
Demagnetized zone % Silicified and pyritized
stockwork Humpbhris and Tivey, 2000




Tools available
|. Distribution of species as fn of T (MINEQL, EQ3, REACT)
Sensitivity to input
A. thermodynamic data
B. fluid composition data
C. temperature data
ll. Path reaction
A. assumptions about kinetics
B. assumptions about whether T is conservative
» |1l. Transport-reaction
A. small scale across steep gradients
B. large scale at low transport rates
C. assumptions — kinetics, boundary conditions,
steady-state



In sulfide-rich vent deposits, must consider transport of heat, which, if by

diffusion, is much more rapid than transport of mass:
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In sulfide-rich vent deposits, must also consider transport of heat, which, if by

diffusion, is much more rapid than transport of mass:
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In sulfide-rich vent deposits, must also consider transport of heat, which, if by

diffusion, is much more rapid than transport of mass:
Temperature across chlmney wall ;

2°C seawater
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OBS, 1 layer, diffusion
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OBS, HF-SW mixing

OBS, 1 layer, diffusion
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greatly affect energy available; pH and T of redox transition have
much greater effect.
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Mixing style

45°C to 80°

80°C to 120°C

OBS-SW
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pH~6-7
=80V <19
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|
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5_0'9 SO
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Note
sensitivities
of results
(e.g., pH and
T of redox
transition)

to fluid
compositions
and transport
styles.

Yellow, highly reduced;
orange, relatively oxidized;
sulfate reduction, SR;
sulfide oxidation, SO;
methanogenesis, M (yellow):
methanotrophy, M (orange).
OBS-SW mix data are from
McCollom and Shock [1997].
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Tools available
|. Distribution of species as fn of T (MINEQL, EQ3, REACT)
Sensitivity to input
A. thermodynamic data
B. fluid composition data
C. temperature data
ll. Path reaction (EQ6, REACT)
A. assumptions about kinetics
B. assumptions about whether T is conservative
lll. Transport-reaction
A. small scale across steep gradients
» B. large scale at low transport rates
C. assumptions — kinetics, boundary conditions,
steady-state



More complicated 1-D and 2-D coupled transport-reaction
models that consider conservation of fluid mass in the
system:

00=-V" 9
ot
where ¢ is porosity, q the velocity vector

And conservation of solute mass:
Q(_,é_ci). T v (Jdisp T Jadv i Jdiff) = Ri
ot
where C is moles/m3 fluid, R is net rate (moles i/m3 rock/s)
for all chemical reactions, J is flux (dispersive (disp), diffusive
(diff), and advective (adv); Steefel and Lasaga, 1990.

Need information on kinetics of various reactions, on how
changes in porosity affect permeability. If fluid flow
(advection) is rapid, it is not possible to fully couple the
equations.



I\VV. Best tools for specific environments
Diffuse flow — Mixing using path reaction model

Plumes — Path reaction model with precipitation allowed
and hydrogen oxidation inhibited

Chimney walls — Transport through 95 2°C seawater
porous/permeable media V- J) e \

B
seawater

vent fluid

chimney cold,

diffuse oxygenated
flow seawater

hot, reduced

hydrothermal fluid



V. Sensitivity of results to assumptions made
|s temperature conservative?

Should some reactions be inhibited?

Is mixing a good approximation 95 2°C scawater
for question being asked? V.~ ) e

B
seawater

Are boundaries really at steady-state?p’

vent fluid

chimney cold.

diffuse oxygenated
flow seawater

hot, reduced

hydrothermal fluid



= YEpeast N TC8-4=middle of chimney wall.
BET TR, TC8-1=outside chimney wall

So the temperature, and likely
the fluid composition, at the
exterior of the deposit varies
on ~12 hr time-scale.




VI. Limitations in current ability to quantify processes

Models assume steady-state.

Need information on reaction rates. - /(

& seawater
If flow rates are very high, problems
occur, cannot converge on solution.

vent fluid

chimney

cold,
diffuse  oxygenated
flow seawater

hot, reduced

hydrothermal fluid



VI. Limitations in current ability to quantify processes
Models assume steady-state.

Need information on reaction rates. -
& SE;\N’étEF

If flow rates are very high, problems
occur, cannot converge on solution.

vent fluid

chimney

cold,
diffuse oxygenated

For example with flow  seawater
diffusers, flow rates
are large enough so
that transport by hot, reduced

diffusion and advection PECERERIEE

cannot be calculated.

Instead, assume advection across a thermal gradient
dominates, and model as a conductively cooled fluid.
Need to know actual flow rates! Measure in the field.

225-300C 225-50°C B



Key points to remember:
Models are tools dependent on
quality of input

Can be used very effectively to 95 2°C seawater
test significance of various M ) e

*
seawater

parameters/assumptions

- change 1 piece of input |
and run again s

- match observed field data chimney cold,

diffuse oxygenated
flow seawater

In most vent environments,
transport dominates, so —
reactants are not limiting, and hydrothermal fluid
products are carried away Models are best used
coupled to collection
of field/laboratory data.




